
...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

........
........
........
........
........
........
........
........
...

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...detLFS

detLFS - Getting started

Thomas Dettbarn dettus@dettus.net

July 25, 2016

2

Copyright (c) 2016, Thomas Dettbarn
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

1 Introduction 5
1.1 Nomenclature . 5

2 Building a system 7
2.1 Prerequisites . 8

2.2 Cleanup after build . 8

2.3 Pre-build configuration . 8

2.3.1 The hostname . 8

2.3.2 Changing to a UART console 9

2.3.3 The boot logo . 9

2.3.4 Kernel and busybox configuration 9

2.3.5 Network, System time etc. 10

2.4 Preparing the SD card . 10

2.5 Current packages . 12

3 The build process explained 13
3.1 The scripts . 13

3.1.1 0 getit.sh . 13

3.1.2 1 buildtools.sh . 13

3.1.3 2 basesystem.sh . 13

3.1.4 3a comppackages.sh 13

3.1.5 3b ownpackages.sh 13

3.1.6 4 mksdcard.sh . 14

3.2 The directorys . 14

3.2.1 Downloads/ . 14

3.2.2 Sources/ . 14

3.2.3 Build/ . 14

3.2.4 Tools/ . 14

3.2.5 Destination/ . 14

3.2.6 Mnt/ . 14

3

4 CONTENTS

4 Using your system 15
4.1 The init scripts . 15
4.2 Changing the root password 15

Chapter 1

Introduction

Hello. Welcome. Thank you for your interest in the system builder detLFS.
I started this project, because I had a Raspberry Pi lying around, and
I had to do something very specific to it at work. The distribution im-
ages offered by the raspberrypi.org homepage where good, but not
what I was looking for. Other system builders like crosstool-ng, buildroot
or Yocto seemed popular, but quite exhaustive. I was looking for some-
thing smaller. Something everybody could understand and modify.
So, out of my stubborness, detLFS was born. Its goal is to provide the ad-
vanced Raspberry Pi user with a minimalistic set of scripts to build their
very own Linux system. Including a Kernel, busybox as a shell replace-
ment and a working GCC, which is always a tedious process.

At its core is a selection of shell scripts, which are less than 150 lines
long, and pretty straight forward. There are no conditions in them, no
loops, just pure and utter commands. One after the other.
Understanding what the scripts do is thus not only easy, but also imper-
ative. If you have not done so, just look at them. They are going to be
explained in greater detail in chapter 3.1.

1.1 Nomenclature

Host system The scripts will require to be run on a Desktop PC. This is the
host. So far, only Ubuntu 14.04 and 16.04 have been used for this,
building everything under OpenBSD failed.

Target system This will be the Raspberry Pi, albeit only because of the
Kernel which is downloaded via git and the bootloader. In theory,
the scripts can be expanded to include other eval boards.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Building a system

Building a system is as easy as 1, 2, 3. It can be downloaded and un-
packed on the commandline:

% wget http://www.dettus.net/detLFS/detLFS_0.02.tar.gz
% tar xvfz detLFS_0.02.tar.gz
% cd detLFS_0.02
% ls
0_getit.sh 4_mksdcard.sh logo/
1_buildtools.sh bsd_twoclause.txt readme.txt
2_basesystem.sh config_busybox runall.sh
3a_comppackages.sh config_kernel skeldir/
3b_ownpackages.sh helloworld.c

Note that all the files in here start with either a number or a lower case
letter. This is because generated files and directories will start with upper
case letters. After running the scripts (which will take hours), the direc-
tory looks like this:

% sh 0_getit.sh #download the packages
% sh 1_buildtools.sh #build the cross compiler
% sh 2_basesystem.sh #for a minimalistic system
% sh 3a_comppackages.sh #build the compilers
% sh 3b_ownpackages.sh #build your own packages
% sudo sh 4_mksdcard.sh #HAZARDOUS
% ls
0_getit.sh Build/ Helloworld_shared.app
1_buildtools.sh config_busybox Helloworld_static.app
2_basesystem.sh config_kernel readme.txt
3a_comppackages.sh Destination/ runall.sh
3b_ownpackages.sh Downloads/ skeldir/
4_mksdcard.sh helloworld.c Sources/
bsd_twoclause.txt logo/ Tools/
Mnt/

Which will take approximately three hours. 4 mksdcard.sh will not run
out of the box, since it needs a handful of changes. It is also the one

7

8 CHAPTER 2. BUILDING A SYSTEM

that needs root priviledges and is therefore DANGEROUS. Once it has
been built, you can use it. See chapter ?? for that.

2.1 Prerequisites

The build system was tested successfully on Ubuntu 14.04, as well as
Ubuntu 16.04. The requirements are quite moderate: gcc-4.8.4 was in-
stalled, gawk, git, as well as Imagemagick and netpbm. Among the
usual suspects were make, tar, gzip, bzip2 and xz. Not even a working
cross compiler is needed, the scripts can build everything they need.
Even though they are small, running them results in at least 11 Gigabytes
of downloaded sources and binaries. The final system is either 64 Mbyte
or 700 MBytes large. Depending on how many scripts were running. You
will need to have an SD card that size. As well as a Raspberry Pi to run
everything on.

2.2 Cleanup after build

After the system has been build, only Destionation/ needs to be saved.
The directories Build/, Downloads/, Mnt/, Sources/ and Tools/ can
go:

% rm -rf Build Downloads Mnt Sources Tools
% rm -rf Destination # if you want

2.3 Pre-build configuration

Before you want to build your system, you have to make up your mind
what you want to have in it. I needed something to run on a Raspberry
Pi2 with a Touchscreen attached to it and a Cherry Keryboard. And I
wanted to have a fancy and colourful bootlogo, as well as a root user.
For this, the directories skeldir/ and logo/ are important, as well as
the two files config busybox and config kernel.

2.3.1 The hostname

The hostname can be changed simply by typing

% cat skeldir/etc/hostname
detlfs
% echo "newhostname" >skeldir/etc/hostname

2.3. PRE-BUILD CONFIGURATION 9

2.3.2 Changing to a UART console

Since my machine was connected directly to a monitor, I did not need
the serial port. This is reflected by the cmdline.txt in skeldir/boot/:
% cat skeldir/boot/cmdline.txt
dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2
rootfstype=ext4 elevator=deadline fsck.repair=yes
init=/sbin/init rootwait

Note that this is a single line. Change this to

% cat skeldir/boot/cmdline.txt
dwc_otg.lpm_enable=0 console=ttyAMA0,115200
root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline
fsck.repair=yes init=/sbin/init rootwait

That SHOULD DO THE TRICK. I HAVE NOT TRIED IT OUT YET! (sorry)

2.3.3 The boot logo

When the system is booting, it is displaying a nice little logo. For this,
basically any picture with 80x80 pixels and no more than 224 colours
can be used. Just overwrite the mylogo.xpm in logo/:

% convert WHATEVER.png -scale \!80x80 logo/mylogo.xpm.

It will be converted into its final format during the run of 1 buildtools.sh.

2.3.4 Kernel and busybox configuration

Configuration of the kernel and for busybox can be performed by edit-
ing the config kernel and config busybox. Those files have been
configured to work with my Raspberry, and the 2 basesystem.sh will
use them during its run. If you prefer to have a menu driven interface,
and are not bothered by the sudden user interaction requires, please
edit it. The following lines

10 CHAPTER 2. BUILDING A SYSTEM

make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea
configuration of the kernel can be done by choosing on
cat $DETLFSROOT/config_kernel | sed -e ’s?CONFIG_CROSS_CO
#vimdiff .config $DETLFSROOT/config_kernel
#make ARCH=arm menuconfig
pick one!
make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea
...
make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea
configuration of busybox can be done by choosing one o
cat $DETLFSROOT/config_busybox | sed -e ’s?CONFIG_CROSS_C
#vimdiff .config ../../../config_busybox
#make ARCH=arm menuconfig
pick one!
make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea

should become
make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea
configuration of the kernel can be done by choosing on
#cat $DETLFSROOT/config_kernel | sed -e ’s?CONFIG_CROSS_C
#vimdiff .config $DETLFSROOT/config_kernel
make ARCH=arm menuconfig
pick one!
make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea
...
make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea
configuration of busybox can be done by choosing one o
#cat $DETLFSROOT/config_busybox | sed -e ’s?CONFIG_CROSS_
#vimdiff .config ../../../config_busybox
make ARCH=arm menuconfig
pick one!
make ARCH=arm CROSS_COMPILE=$TOOLSDIR/bin/arm-linux-gnuea

2.3.5 Network, System time etc.

I don’t know.

2.4 Preparing the SD card

If you have tried running 4 mksdcard.sh earlier, you might have no-
ticed that it refused to run at all. This is because it contains a line

echo "aborting now." ; exit ## COMMENT THIS ONE OUT ONC

As the line says, it can be commented out once the script has been
understood. Just plug in an SD card into your computer, and use dmesg
to figure out which device it is.

2.4. PREPARING THE SD CARD 11

% dmesg
[950012.353484] sd 11:0:0:2: [sdh] 31116288 512-byte logi
[950012.354814] sd 11:0:0:2: [sdh] No Caching mode page f
[950012.354819] sd 11:0:0:2: [sdh] Assuming drive cache:
[950012.356714] sd 11:0:0:2: [sdh] No Caching mode page f
[950012.356715] sd 11:0:0:2: [sdh] Assuming drive cache:
[950012.361979] sdh: sdh1 sdh2

On my computer, it was /dev/sdh. So edit 4 mksdcard.sh, ESPECIALLY
the line where MMCCARD is being set:

export MMCCARD="/dev/sdf"

into /dev/sdh. Or /dev/mmcblk0 or something. Not /dev/mmcblk0p1.
Not /dev/sdh2. Once you have done that AND YOU ARE SURE, com-
ment out the exit:

echo "aborting now." ; exit ## COMMENT THIS ONE OUT ON

Then you can run the script, and partition the SD card.

% sudo sh 4_mksdcard.sh
Command (m for help): n
Partition type:

p primary (0 primary, 0 extended, 4 free)
e extended

Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-31116287, default 2048): 2048
Using default value 2048
Last sector, +sectors or +size{K,M,G}: +16M
Command (m for help): n
Partition type:

p primary (1 primary, 0 extended, 3 free)
e extended

Select (default p): p
Partition number (1-4, default 2): 2
First sector (34816-31116287, default 34816): 34816
Using default value 34816
Last sector, +sectors or +size{K,M,G}: +1024M
Command (m for help): t
Partition number (1-4): 1
Hex code (type L to list codes): c
Changed system type of partition 1 to c (W95 FAT32 (LBA))
Command (m for help): p

Device Boot Start End Blocks Id System
/dev/sdh1 2048 34815 16384 c W95 FAT32 (LBA)
/dev/sdh2 34816 2131967 1048576 83 Linux
Command (m for help): w

The type for partition one is important. If it is set to anything other than
Id=c, your Raspberry will not boot.

12 CHAPTER 2. BUILDING A SYSTEM

After this brief user interaction, the SD card should be finished and bootable.
Try it out now!

2.5 Current packages

At the moment of writing this document, the latest version of the pack-
ages were

• binutils-2.26.1

• busybox-1.25.0

• gcc-5.4.0

• glibc-2.23

• gmp-6.1.1

• linux 4.4.15, raspberry pi extensions 4eda74f2dfcc8875482575c79471bde6766de3ad

• make-4.2.1

• mpc-1.0.3

• mpfr-3.1.4

The latest version can always be downloaded by editing 0 getit.sh.
Of note is the fact that gcc 5.4.0 has been chosen as the build tool of
choice, even though the latest version was 6.1.0. However, that version
was unable to build the glibc.

Chapter 3

The build process explained

3.1 The scripts

3.1.1 0 getit.sh

The purpose of this script is to download the packages needed for the
target linux, as well as the sources for the cross compiler. After running it,
the directories Downloads/ and Sources/ will appear.

3.1.2 1 buildtools.sh

This script is building the cross compiler. After running it, the directo-
ries Build/ and Tools/ will appear. It will also create two applica-
tions, Helloworld shared.app and Helloworld static.app. If they
appeared, the cross compiler is able to run.

3.1.3 2 basesystem.sh

This script is creating the base system, consisting of the Kernel and Busy-
box. They are being copied into Destination/.

3.1.4 3a comppackages.sh

This script is optional, but it will compile the GLIBC and GCC for the Rasp-
berry Pi, and install them into Destination/.

3.1.5 3b ownpackages.sh

This script is optional, its purpose is to provide an example to show how
to extend the build process.

13

14 CHAPTER 3. THE BUILD PROCESS EXPLAINED

3.1.6 4 mksdcard.sh

This script will create the final folder Mnt/. It is dangerous, since it needs
to be run with root priviledge. Please see chapter 2.4 before running it.

3.2 The directorys

3.2.1 Downloads/

This directory holds the packages which have been downloaded from
the internet.

3.2.2 Sources/

This directory contains the extracted sources from the packages. The
version numbers have been removed, to make the build scripts easier
to understand.

3.2.3 Build/

This directoy contains object files and binaries, as well as the temporary
files during the build.

3.2.4 Tools/

This directoy contains the cross compiler.

3.2.5 Destination/

This directory will become the root filesystem on the Raspberry.

3.2.6 Mnt/

This is where the SD Card will be mounted.

Chapter 4

Using your system

?? The login is root, the password is root as well.

4.1 The init scripts

4.2 Changing the root password

15

