dMagnetic

A Magnetic Scrolls Interpreter

Release 0.35

Thomas Dettbarn dettus@dettus.net

May 16, 2023
dMagnetic has been released under the BSD-2-clause license

Copyright (c) 2023, Thomas Dettbarn
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
 list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
This software is provided by the copyright holders and contributors "AS IS" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are
disclaimed. In no event shall the copyright holder or contributors be liable for
any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused and
on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of the use of this
software, even if advised of the possibility of such damage.

Magnetic Scrolls was an interactive fiction developer, based in London UK, active between 1984 and 1990 and pioneer of audio-visually elaborate text adventures.
Contents

1 Introduction 5

2 Getting started 7
 2.1 Downloading and compiling dMagnetic 7
 2.2 The game binaries 7
 2.2.1 .mag and .gfx 8
 2.2.2 MS DOS binaries 8
 2.2.3 Magnetic Windows resource files 8
 2.2.4 D64 image files 10
 2.2.5 Amstrad CPC image files 10
 2.2.6 Spectrum128/Spectrum+3 image files 10
 2.2.7 Acorn Archimedes image files 10
 2.2.8 AtariXL/Atari800 .ATR image files 10
 2.2.9 Apple II 11
 2.3 Taking the first steps 11
 2.4 Saving the configuration in an .ini-file 13

3 Graphics 15
 3.1 Size of the graphics 17
 3.2 Text only .. 17
 3.3 Monochrome .. 19
 3.4 Low Ansi ... 21
 3.5 Low Ansi 2 ... 21
 3.6 High Ansi .. 22
 3.7 High Ansi 2 ... 22
 3.8 Sixel .. 22
 3.8.1 Resolution 24
 3.9 UTF .. 25
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Random events</td>
<td>27</td>
</tr>
<tr>
<td>4.1 Pseudo random</td>
<td>27</td>
</tr>
<tr>
<td>4.2 External random generator</td>
<td>28</td>
</tr>
<tr>
<td>5 Advanced logging</td>
<td>29</td>
</tr>
<tr>
<td>5.1 A walkthrough script</td>
<td>29</td>
</tr>
<tr>
<td>5.2 Turning a walkthrough into a story</td>
<td>30</td>
</tr>
<tr>
<td>A Command line parameters</td>
<td>31</td>
</tr>
<tr>
<td>B dMagnetic.ini file</td>
<td>35</td>
</tr>
<tr>
<td>B.1 Example</td>
<td>38</td>
</tr>
<tr>
<td>C Priorities</td>
<td>41</td>
</tr>
<tr>
<td>C.1 Location of .ini files</td>
<td>41</td>
</tr>
<tr>
<td>C.2 Configuration</td>
<td>41</td>
</tr>
<tr>
<td>D ANSI RGB values</td>
<td>43</td>
</tr>
<tr>
<td>E Compiler defines</td>
<td>45</td>
</tr>
<tr>
<td>E.1 Experimental defines</td>
<td>45</td>
</tr>
<tr>
<td>E.2 Testing defines</td>
<td>45</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

“I am having great trouble in finding someone to perform an extremely simple task and I wonder if you would help me out. If you deliver this sealed letter to King Erik of Kerovnia, you will be well rewarded when I next meet you on your travels and I would be forever indebted to you.”
— Kronos the magician

Hello, and thank you for your interest. dMagnetic is a Magnetic Scrolls interpreter. It can be used to play the following classics:

- The Pawn
- The Guild of Thieves
- Jinxter
- Fish!
- Corruption
- Myth
- Wonderland

Those games were Text adventures, a popular genre during the 1980s. They were telling a story in written form, and to advance, players had to type in instructions. Since players were presented with a story, one with which they could interact, those were also affectionally called “interactive fiction”.

To explore the environment, for example, one would type in GO NORTH, GO UP or NW. OPEN DOOR would open a door, and to talk to other characters was started by something like SAY HELLO. Players also had so solve puzzles, rescue a princess (or not), which was a big part of the
gameplay. Magnetic Scrolls took great pride in its advanced parser, which was famous for being able to understand instructions such as
\texttt{PLANT THE POT PLANT IN THE PLANT POT WITH THE TROWEL.}

Some games used graphics to illustrate the story, and Magnetic Scrolls’ games were particularly famous for the beauty of the images they used.

The 1980s were also a decade in which several home computer systems were fighting for dominance. Software, and games, had to be written for as many of those platforms as possible, to reach a wider audience. For developers, this meant writing in assembler for several processors. Finding an error in one system, or even a small rewrite to the story would have caused a painstakingly tedious process, where the software for all the other systems had to be checked and modified as well.

Magnetic Scrolls’ solution to this was to create a virtual machine, one that was greatly inspired by the popular 68000 processor, and to develop the games for this. This machine was ported to different platforms, and the story, the puzzles, and the images had to be designed only once.

By itself, \texttt{dMagnetic} is not a game. It is an implementation of the virtual machine. It requires the original game binaries to run. In theory, it could run other software as well, but it has not been designed for that.

The purpose of this document is to explain the usage of \texttt{dMagnetic}, to allow users on modern computers to play the classics.

Thank you Hugh. Thank you Stefan. Thank you Niclas and David for your pioneering work on reverse engineering.
And finally: Thank you Magnetic Scrolls for being one of the reasons that have gotten me into computer science.
Chapter 2

Getting started

“The Guild and I have surveyed this region and know exactly how much of value is to be obtained. Jump to the jetty and begin your work. Return here when you have completed your business. And remember, I and my associates will be keeping an eye on you.”

— The master thief

2.1 Downloading and compiling dMagnetic

dMagnetic can be downloaded from its homepage(2). Since it has been developed on OpenBSD and was later ported to Linux, it can be downloaded within a terminal window by typing

% wget https://dettus.net/dMagnetic/ \\
% dMagnetic_0.35.tar.bz2
% tar xvfj dMagnetic_0.35.tar.bz2
% cd dMagnetic_0.35
% make

This should result in an executable file called “dMagnetic”. Typing

% ./dMagnetic --help

should print out the most important command line parameters.

2.2 The game binaries

dMagnetic by itself is not a game. It is an interpreter for game binaries, offering several possibilities to play them. One of which is owning the original files from the MS-DOS release of the games. A more robust way is using .mag and .gfx container files.
2.2.1 .mag and .gfx

The container format has been developed by Niclas Karlsson and David Kinder; it allowed for a uniform way of combining the necessary game binaries from different platforms into two files: One for the story and the interpreter (.mag), and one for the BEAUTIFUL graphics (.gfx). Magnetic Scrolls is especially known for the latter.

Several of those containers can be downloaded from the Magnetic Scrolls Memorial’s Website(1). Afterwards, “The Pawn” can be played by typing

% ./dMagnetic -mag pawn.mag -gfx pawn.gfx

This should start the game in the same terminal window. It is now possible to play, or to close dMagnetic by typing QUIT.

By default, the size of the terminal is expected to be at least 125 columns wide and 50 rows high. Running dMagnetic in a smaller window might result in distorted output. Changing the window size helps, but if this is not possible, please see chapter 3.1.

2.2.2 MS DOS binaries

In case somebody is lucky enough to own an original copy of “The Pawn”, and has installed it in the directory /C/GAMES/PAWN, typing

% ./dMagnetic -msdosdir /C/GAMES/PAWN -vmode high_ansi2

will read the binaries and load them into the virtual machine. This version also provides a beautiful title screen, which is shown before the actual game can be played in the terminal window.

As with the .mag and .gfx files, the terminal window’s size is expected to have at least 125 columns and 50 rows. Additionally, the graphics are in a slightly different format. Chapter 3.7 explains how to view them with a richer amount of colours.

2.2.3 Magnetic Windows resource files

“Wonderland” and “The Magnetic Scrolls Collection” were released using a framework called “Magnetic Windows”. This one used several resource file at its core. dMagnetic is able to read those. To provide the location, the prefix and possible capitalization of those, the name of the file ending in “TWO.RSC” needs to be provided:
2.2. THE GAME BINARIES

The names of the other resource files (like ONE.RSC, THREE.RSC, FFOUR.RSC...) is being calculated from this.

It should also be noted that this release saw the addition of some bonus graphics, which, of course, are being shown in dMagnetic as well.

This collection also offers alternative pictures for the EGA graphics. To play with those pictures, it is recommended to try

% ./dMagnetic -tworsc MSC/GTWO.RSC -ega -vmode sixel

For games from this framework, however, graphics only become visible after typing GRAPHICS on the prompt.

Figure 2.1: “The Guild of Thieves”, with Commodore C64 graphics, running in dMagnetic 0.24.
2.2.4 D64 image files

dMagnetic is also capable of reading .d64 images of the original games. It can be loaded with the following instruction:

% ./dMagnetic -d64 guild1.d64,guild2.d64

Please note, that the d64 images come in pairs, since the C64 floppies had a front- and a backside. Both of them have to provided by adding a komma. There are also some D64 images on the internet, which have been created from deteriorated floppies.

2.2.5 Amstrad CPC image files

For enthusiasts of the Amstrad CPC, also known as Schneider CPC, dMagnetic offers the possibility to load the original files from DSK images.

% ./dMagnetic -amstradcpc guild1.dsk,guild2.dsk

Just as the d64 images, DSK images come in pairs.

2.2.6 Spectrum128/Spectrum+3 image files

There is also the possibility to play the games by loading the DSK images from the Spectrum128/Spectrum+3 releases of the games. Those releases did not offer the graphics, so they were small enough to fit onto a single floppy disk.

% ./dMagnetic -spectrum GUILDspectrum.dsk

2.2.7 Acorn Archimedes image files

The Acorn Archimedes was a powerful computer. The RISC OS filesystem images can be found in the form of .adf/.adl/.adfs image files. Those can be loaded with the following commandline.

% ./dMagnetic -archimedes GUILDarchimedes.adf

2.2.8 AtariXL/Atari800 .ATR image files

The AtariXL/Atari800 were 8-Bit machines. Their disk images have been preserved in the form of .atr image files. Since on those machines, the games were sold on two floppy sides, two image files need to be provided with the following commandline.

% ./dMagnetic -atarixl jinxter1.atr,jinxter2.atr
2.3. TAKING THE FIRST STEPS

2.2.9 Apple II

The Apple II was a 6502-based computer. Among other formats, their disk images have been preserved as .NIB, .2MG or .WOZ files. The games for this platform require between one and three floppy images, they can be provided with the following commandline.

% ./dMagnetic -appleii pawn.nib
% ./dMagnetic -appleii jinxter1.2mg,jinxter2.2mg
% ./dMagnetic -appleii corrA.woz,corrB.woz,corrC.woz

2.3 Taking the first steps

Once dMagnetic has been started to play “The Pawn” by either one of

% ./dMagnetic -mag pawn.mag -gfx pawn.gif
% ./dMagnetic -msdosdir /C/GAMES/PAWN

the game is running. The player is greeted with a screen, consisting of four elements, as seen in Figure 2.2. On the top, there is a header, giving away the room the player is currently in, as well as the score and the number of steps already taken. Below that comes the story in the form of text. (It IS a text adventure afterall). Occasionally, the rooms have some illustrative images. Which will be, by default, rendered in ANSI Art. (Chapter 3.4 elaborates on the -vmode low Ansi option).

The last element is the input prompt, starting with >. To advance in the game, and the story, text adventures require the player to type in instructions. Going north three times from the starting point in “The Pawn”, for example, will lead the player to a larger boulder.

> GO NORTH
> GO NORTH
> GO NORTH

From here, going back to the starting point, and east afterwards will lead to the first encounter with Kronos the magician.

> GO SOUTH. GO SOUTH. GO SOUTH.
> GO EAST

As it turns out, he is pretty hard to kill.

> KILL KRONOS
Kronos waves his wand and you are knocked to the ground. "That should teach you", he says with conviction.

The game can be left anytime by typing QUIT.
To store the game’s status before can be done by typing
> SAVE
Please enter filename: WHATNOW.GAM
Are you sure (y/n)? y

and later be restored with

> LOAD
Please enter filename: WHATNOW.GAM
Are you sure (y/n)? y
> LOOK

Figure 2.2: “The Pawn”, running in dMagnetic 0.19. Visible elements when playing “The Pawn” are: The header (1), the image (2) (in this case rendered in ANSI art), the text (3) and the input prompt (4).
2.4 Saving the configuration in an .ini-file

In case the user is getting more inclined to run any of the games more often, typing in full pathnames before being able to run the game might become a tedious chore. Instead, it is possible to create a dMagnetic.ini file in the home directory. This allows for a shortcut.

```bash
% echo "[FILES]" >˜/dMagnetic.ini
% echo "pawnmag="'pwd'"/pawn.mag" >>˜/dMagnetic.ini
% echo "pawngfx="'pwd'"/pawn.gfx" >>˜/dMagnetic.ini
```

This way, a single command line option is required to select “The Pawn” for playing

```bash
% ./dMagnetic pawn
```

A more comprehensive dMagnetic.ini file can be produced by typing

```bash
% ./dMagnetic -helpini >˜/dMagnetic.ini
```

This file needs to be edited.

It is possible to use several dMagnetic.ini files. To distinguish between them, the -ini parameter can be used on the command line

```bash
% ./dMagnetic -ini dMagnetic.test.ini pawn
```
Chapter 3

Graphics

“We knew you’d stop the Seven Deadly Fins. Good show! It’s a shame they got away again. But now I suggest you take a vacation. You’ve earned it, old boy.”
— Sir Playfair Panchax

Magnetic Scrolls’ games were famous for the beautiful images with which they enriched their stories. dMagnetic has been designed to run in a terminal, but it offers various ways of displaying them, by means of the -vmode commandline parameter. To make the selection permanently, the entry mode= in the [DEFAULTGUI] section of the dMagnetic.ini file can be changed. An illustration about the different options for playing the games can be seen in figure 3.1.

If the user wishes to try out the monochrome mode, for example, the command line used would be

% dMagnetic -vmode monochrome pawn

In case this mode is satisfactory, the entry in the [DEFAULTGUI] section would then be changed to

mode=monochrome

This way, the extra parameter can then be skipped the next time dMagnetic is being started

% dMagnetic pawn
Figure 3.1: The options for the -vmode command line parameter offer a wide range of possibilities to experience “The Pawn” in a terminal window. The actual choice does not only depend on the user’s preference, but also on the capabilities of the terminal window. The “sixel” mode, for example, offers the highest resolution, but only works in certain variants of xterm.
3.1 Size of the graphics

The size of the graphics, its height and its width, are configurable within the .ini file or via command line parameters. In the .ini file, the entries are rows and columns within the [DEFAULTGUI] section.

[DEFAULTGUI]
rows=40
columns=120

The same values can be passed to dMagnetic with the vrows and vcols parameter

% ./dMagnetic -vcols 120 -vrows 40 pawn

By default, a UNIX terminal offers only 80x25 characters. If a user wishes to play within this confined space, it is possible to restrict the graphics to 15 lines.

% ./dMagnetic -vcols 80 -vrows 15 pawn

Which is 60% of the available space. An example can be seen in the top half of figure 3.2.

Alternatively, the images can be rendered in a higher resolution. This requires nothing more than a resize of the terminal window. However, with this technique, a pixel is exactly as wide as a character in the textual output. Meaning, that when the pixels get smaller, the texts get smaller. This can be seen in the bottom half of figure 3.2.

Choosing the actual size of the images should thus be up to the user’s personal preferences.

3.2 Text only

Adding the parameter -vmode none to the commandline allows the user to play the games as pure text adventures.

% dMagnetic -vmode none -vcols 50 pawn
--------------------------------[ON THE PATH 0/1]--
On The Path
You are on a gravel path leading north to two snow capped mountains. To the west is a dying forest. Eastward is a vast, grassy plain and the path also continues southward.
>

It should be noted that this case also requires the addition of the -vcols parameter, to show the text with proper line wraps.
Figure 3.2: Top: “The Pawn”, running in xterm, with \texttt{-vcols 80 -vrows 15}. The graphics are scaled down to fit within a terminal window with 80 columns and 25 rows. Bottom: “The Pawn”, running in xterm, with \texttt{-vcols 260 -vrows 150}. The image takes up most of the screen and shows the highest amount of detail. However, the text becomes smaller.
3.3. **MONOCROME**

To make the text-only output the default, the entry `mode=none` in the `[DEFAULTGUI]` section of the dMagnetic.ini file needs to be set.

The standard alignment for the text is block aligned (`-valign block`). This can be changed with the command line option `-valign left` or `-valign right`.

```bash
% dMagnetic -vmode none -vcols 50 -valign left pawn
---------------------------------[ON THE PATH 0/1]-
On The Path
You are on a gravel path leading north to two snow capped mountains. To the west is a dying forest. Eastward is a vast, grassy plain and the path also continues southward.
```

Currently, the right alignment is considered broken.

```bash
% dMagnetic -vmode none -vcols 50 -valign right pawn
---------------------------------[ON THE PATH 0/1]-
On The Path
   You are on a gravel path leading north to two snow capped mountains. To the west is a dying forest. Eastward is a vast, grassy plain and the path also continues southward.
```

The preferred alignment option can be set within the `[DEFAULTGUI]` section with the `align` entry.

3.3 Monochrome

The `-vmode monochrome` and `-vmode monochrome_inv` parameters offer the possibility to play the game with images, even if the terminal does not have any colour-capability.

The effect is acquired by calculating the intensity, or brightness, of each pixel, which is then translated into a character. The characters can be configured by changing the `monochrome_characters` entry of the `[DEFAULTGUI]` section in the dMagnetic.ini file. Said entry defines a ramp, from left to right, of increasing intensity.

It should be noted that the background of the terminal window factors into the appearance of the image, as seen in figure 3.3.

One a white background, this technique works as followed: Small characters, such as a dot `.`, will be perceived as light. On the other hand, larger characters, such as `@` cover more of the white background and are being perceived as dark.
You find yourself in the foothills below the nearest of the snow-capped mountains which looms up ominously in front of you. Around you, the floor is strewn with massive boulders. The only exits are south, along the gravel path, and a track leading northwest up the side of the mountain. Which is blocked by a particularly large boulder.

Figure 3.3: The monochrome output with different characters configured in the dMagnetic.ini file. Top: vmode monochrome, optimized for black backgrounds. Bottom: vmode monochrome_inv, optimized for white backgrounds.
3.4. LOW ANSI

Using `-vmode low_ansi` will render the images in ANSI art. The colours are first projected into a limited colour palette. Afterwards, from a selection of characters, the ones representing the image best are being chosen.

It is possible to configure the characters used for rendering, by changing the entry `low_ansi_characters` in the `[DEFAULTGUI]` section of the `dMagnetic.ini` file.

This mode works best in terminal windows which offer the VGA ANSI RGB palette in appendix D.

3.5 Low Ansi 2

The MS-DOS releases of the games had a different format to store the images. Here, a higher resolution was used, albeit with only 2 instead of 3 bits per RGB-channel. Hence the introduction of the `-vmode low_ansi2`: It uses an alternative algorithm to choose the colours before rendering them by averaging over several pixels. The resulting picture has more nuances, as can be seen in figure 3.4. The experience for the player is a much more satisfying one.
3.6 High Ansi

Using `-vmode high_ansi` is rendering the images with the real RGB values. It requires a terminal window with the capability to do so, otherwise the image will be invisible. This mode provides a rich amount of colours, however, one pixel is as large as a single character. The output will look blocky and pixelated.

3.7 High Ansi 2

As with the High Ansi mode, this mode requires a terminal window with the capability of showing real RGB values. As figure 3.5 shows, the images from the MS-DOS version of the games can create some issues on modern monitors. Thus, the command line parameter `-vmode high_ansi2` can be used to average over several pixels.

3.8 Sixel

Sixels is a technique that offers the possibility of rendering high-resolution images within certain terminal emulators. One such terminal emulator would be xterm, but only when invoked via

```
% xterm -ti vt340
```

the sixel mode becomes available. Another terminal emulator known to offer this mode is miterm. When dMagnetic is running in Eterm, or gnome-terminal, for example, the images will be skipped. Others, such as Linux command lines in text-mode, might start flooding the output with command-codes.
3.8. SIXEL

Figure 3.5: The MS DOS version of “The Pawn” used half-tone graphics for the image. dMagnetic offers two possibilities of rendering those. Top: –vmode high_ansi. Bottom: –vmode high_ansi2.
3.8.1 Resolution

For technical reasons, dMagnetic does not detect the size of the terminal window itself. To scale the images in sixel mode, the maximum resolution has to be passed on with the -sres commandline option. Alternatively, the sixel_resolution entry within the [DEFAULTGUI] section of the dMagnetic.ini file can be set as well.

As can be seen in figure 3.6, the images are in fact being scaled up from their original size, whilst the appropriate aspect ratio is being preserved. To force a resolution (instead of preserving the aspect ratio), the -sforce commandline option or the sixel_forceresolution entry can be used.

![Figure 3.6: Different options for the -sres commandline parameter whilst running the -vmode sixel mode. The original images are being scaled up, their aspect ratio is being preserved. It is up to the user to decide which one should be preferred.](image-url)
3.9 UTF

The UTF mode uses UTF-8 characters to render the pixels. They are larger than sixels, and work better when used with a monitor that has a higher resolution. In addition to this, it works on most terminal emulators.

Figure 3.7: The utf mode offers a compromise between readable text, colours, and medium size resolution. It works in most terminal emulators.
Chapter 4

Random events

“We play a variation on the game of Blackjack.”
— Charon

Certain elements of the games rely on chance, to make playing through them more challenging. Those elements require a random number generator. dMagnetic offers the possibilities to generate the numbers internally, or externally, from the operating system. They can be chosen with the command line parameter \texttt{-rmode pseudo} or \texttt{-rmode real}, and further configured with the parameter \texttt{-rseed 12345}.

Within the \texttt{dmagnetic.ini} file, the [RANDOM] section can be used to make the choice permanent.

```
[RANDOM]
mode=pseudo
;mode=real
seed=12345
```

4.1 Pseudo random

The pseudo random generator offers some sort of determinism when playing through the game. This is necessary for scripted playthroughs (See chapter 5). Basically, the numbers advance with each command that has been typed in. So after the same amount of instructions, the same event happens.

Using \texttt{-rseed 12345} gives the random number generator the start value of 12345. Using a different value will, obviously, result in a different timing of events, and sometimes a different outcome of the game.
4.2 External random generator

A different experience whilst playing can be achieved with the option `-rmode real`. This is using the random number generator of the operating system. The option given by the `-rseed` parameter is used as additional salt.

The random numbers generated here are more sophisticated, even used for cryptographic purposes. Thus, the events happening in the game become much less predictable.

This mode is recommended for a repeated playthrough.
Chapter 5

Advanced logging

“Derek, that Scott Electronics deal did brilliantly.”
— David Rogers

dMagnetic is reading from standard input and writing to standard output. It is thus easy to do some logging in the form of

% dMagnetic pawn | tee pawn.log

However, this is does not work for walkthroughs, since it would only write the story and the images into a file, but not the commands being typed in.

5.1 A walkthrough script

A better way to store the commands, and nothing else, comes with the -vlog parameter.

% dMagnetic pawn -vlog pawncmds.log -rmode pseudo -rseed 1
 > NORTH. NORTH. NORTH.
 > quit
 > y
% cat pawncmds.log
NORTH. NORTH. NORTH.
quit
y

Since -rmode pseudo has been chosen, the random events are deterministic (See chapter 4.1). Thus, the inputs can be played back easily with the same result as before:

% cat pawncmds.log | dMagnetic pawn -rmode pseudo -rseed 1

They can also be copied from the .log file and pasted into a new session of dMagnetic, to get back to the same point as before.
5.2 Turning a walkthrough into a story

To retrace the steps where something went wrong, it is better to have the story along with the commands. To log the inputs as well as the output, the parameter \texttt{-vecho} repeats whatever the user has typed in. This makes \texttt{dMagnetic} work together with the \texttt{tee} command.

\begin{verbatim}
% dMagnetic pawn -vecho | tee pawn.txt
\end{verbatim}

When trying to write a walkthrough script, it is thus recommended to use the following commandline

\begin{verbatim}
% dMagnetic pawn -vlog pawncmds.log -vecho \
-rmode pseudo -rseed 12345 | tee pawn.txt
\end{verbatim}

Once the walkthrough is finished, it can be turned into a book EASILY by typing

\begin{verbatim}
% cat pawncmds.log \
 | dMagnetic pawn -vmode monochrome \
 -rmode pseudo -rseed 12345 \
 -vcols 80 -vrows 40 -vecho >pawn.txt
% a2ps -o- pawn.txt >pawn.ps
% ps2pdf pawn.ps
\end{verbatim}

(Even though \texttt{pawn.txt} should be edited so that the images are not spread out over several pages...)
Appendix A

Command line parameters

Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ini</td>
<td>Location and name of the .ini file.</td>
</tr>
</tbody>
</table>

Loading the game

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-mag</td>
<td>Location and name of the .mag container</td>
</tr>
<tr>
<td>-gfx</td>
<td>Location and name of the .gfx container</td>
</tr>
<tr>
<td>-msdosdir</td>
<td>Location and name of the directory containing the MSDOS binaries.</td>
</tr>
<tr>
<td>-tworsc</td>
<td>Primary resource file for Magnetic Windows</td>
</tr>
<tr>
<td>-d64</td>
<td>Commodore 64 images (both sides)</td>
</tr>
<tr>
<td>-amstradcpc</td>
<td>Amstrad CPC images (both sides)</td>
</tr>
<tr>
<td>-spectrum</td>
<td>Spectrum128 images</td>
</tr>
<tr>
<td>-archimedes</td>
<td>Acorn Archimedes images</td>
</tr>
<tr>
<td>-atarixl</td>
<td>AtariXL/Atari800 images.</td>
</tr>
<tr>
<td>-appleii</td>
<td>Apple II images.</td>
</tr>
</tbody>
</table>

Graphic output

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-vcols</td>
<td>Maximum number of columns for the image</td>
</tr>
<tr>
<td>-vrows</td>
<td>Maximum number of rows for the image</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-vmode</td>
<td>Graphic output mode</td>
</tr>
<tr>
<td></td>
<td>Inverted monochrome</td>
</tr>
<tr>
<td></td>
<td>Different algorithm</td>
</tr>
<tr>
<td></td>
<td>Special mode for the MS DOS images. Requires <code>xterm -ti vt340</code>.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td><code>-sres</code></td>
<td>Resolution for the sixel mode</td>
</tr>
<tr>
<td><code>-sforce</code></td>
<td>Force the resolution</td>
</tr>
<tr>
<td><code>-valign</code></td>
<td>Text alignment</td>
</tr>
<tr>
<td><code>-valign block</code></td>
<td>Currently broken</td>
</tr>
<tr>
<td><code>-valign left</code></td>
<td></td>
</tr>
<tr>
<td><code>-valign right</code></td>
<td></td>
</tr>
<tr>
<td><code>-vlog</code></td>
<td>Logging</td>
</tr>
<tr>
<td><code>-vecho</code></td>
<td>Write the commands into a file</td>
</tr>
<tr>
<td><code>-vecho pawncmds.log</code></td>
<td>Repeat the commands on the output console</td>
</tr>
<tr>
<td><code>-rmode</code></td>
<td>Random events</td>
</tr>
<tr>
<td><code>-rmode pseudo</code></td>
<td>Deterministic random events</td>
</tr>
<tr>
<td><code>-rmode real</code></td>
<td>Real random</td>
</tr>
<tr>
<td><code>-rseed</code></td>
<td>12345 Seed/salt for the random number generator</td>
</tr>
<tr>
<td><code>-savegames</code></td>
<td>Savegames</td>
</tr>
<tr>
<td><code>-savegames classic</code></td>
<td>Enables the use of old savegames.</td>
</tr>
<tr>
<td><code>-savegames advanced</code></td>
<td>Saves in a more robust format.</td>
</tr>
<tr>
<td><code>--help</code></td>
<td>Others</td>
</tr>
<tr>
<td><code>--helpini</code></td>
<td>Prints out the most important parameters</td>
</tr>
<tr>
<td><code>--version</code></td>
<td>Prints out an example of the .ini file.</td>
</tr>
<tr>
<td><code>-ega</code></td>
<td>Prints out the version of dMagnetic.</td>
</tr>
<tr>
<td><code>-nodoc</code></td>
<td>Play without a manual.</td>
</tr>
<tr>
<td><code>-bsd</code></td>
<td>Prints out the license.</td>
</tr>
</tbody>
</table>
Appendix B

dMagnetic.ini file

Section `[FILES]` configures the location of the game binaries.

<table>
<thead>
<tr>
<th>Game</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pawnmag</code></td>
<td><code>/usr/local/games/pawn.mag</code></td>
<td>Container format by (1).</td>
</tr>
<tr>
<td><code>pawngfx</code></td>
<td><code>/usr/local/games/pawn.gfx</code></td>
<td></td>
</tr>
<tr>
<td><code>guildmag</code></td>
<td><code>/usr/local/games/guild.mag</code></td>
<td></td>
</tr>
<tr>
<td><code>guildgfx</code></td>
<td><code>/usr/local/games/guild.gfx</code></td>
<td></td>
</tr>
<tr>
<td><code>jinxtermag</code></td>
<td><code>/usr/local/games/jinxter.mag</code></td>
<td></td>
</tr>
<tr>
<td><code>jinxtergfx</code></td>
<td><code>/usr/local/games/jinxter.gfx</code></td>
<td></td>
</tr>
<tr>
<td><code>corruptionmag</code></td>
<td><code>/usr/local/games/ccorrupt.mag</code></td>
<td></td>
</tr>
<tr>
<td><code>corruptiongfx</code></td>
<td><code>/usr/local/games/ccorrupt.gfx</code></td>
<td></td>
</tr>
<tr>
<td><code>fishmag</code></td>
<td><code>/usr/local/games/fish.mag</code></td>
<td></td>
</tr>
<tr>
<td><code>fishgfx</code></td>
<td><code>/usr/local/games/fish.gfx</code></td>
<td></td>
</tr>
<tr>
<td><code>mythmag</code></td>
<td><code>/usr/local/games/myth.mag</code></td>
<td></td>
</tr>
<tr>
<td><code>mythgfx</code></td>
<td><code>/usr/local/games/myth.gfx</code></td>
<td></td>
</tr>
<tr>
<td><code>wonderlandmag</code></td>
<td><code>/usr/local/games/wonder.mag</code></td>
<td></td>
</tr>
<tr>
<td><code>wonderlandgfx</code></td>
<td><code>/usr/local/games/wonder.gfx</code></td>
<td></td>
</tr>
<tr>
<td><code>pawnmsdos</code></td>
<td><code>/C/GAMES/PAWN</code></td>
<td>Alternative: MS DOS binaries</td>
</tr>
<tr>
<td><code>guildmsdos</code></td>
<td><code>/C/GAMES/GUILD</code></td>
<td></td>
</tr>
<tr>
<td><code>jinxtermmsdos</code></td>
<td><code>/C/GAMES/JINXTER</code></td>
<td></td>
</tr>
<tr>
<td><code>fishmsdos</code></td>
<td><code>/C/GAMES/FISH</code></td>
<td></td>
</tr>
<tr>
<td><code>mythmsdos</code></td>
<td><code>/C/GAMES/MYTH</code></td>
<td></td>
</tr>
<tr>
<td><code>corruptionmsdos</code></td>
<td><code>/C/GAMES/CORRUPT</code></td>
<td></td>
</tr>
<tr>
<td><code>guildtworsc</code></td>
<td><code>/C/GAMES/MSC/GTWO.RSC</code></td>
<td>Alternative: Resource files from the Magnetic Windows System</td>
</tr>
<tr>
<td><code>corruptiontworsc</code></td>
<td><code>/C/GAMES/MSC/CTWO.RSC</code></td>
<td></td>
</tr>
<tr>
<td><code>fishtworsc</code></td>
<td><code>/C/GAMES/MSC/FTWO.RSC</code></td>
<td></td>
</tr>
<tr>
<td><code>wonderlandtworsc</code></td>
<td><code>/C/GAMES/WONDER/TWO.RSC</code></td>
<td></td>
</tr>
<tr>
<td><code>pawnd64</code></td>
<td><code>/d64/pawn1.d64,/d64/pawn2.d64</code></td>
<td>Alternative: Floppy images from the Commodore 64 releases. This parameter requires both sides.</td>
</tr>
<tr>
<td><code>guildd64</code></td>
<td><code>/d64/guild1.d64,/d64/guild2.d64</code></td>
<td></td>
</tr>
<tr>
<td><code>jinxterd64</code></td>
<td><code>/d64/jinxter1.d64,/d64/jinxter2.d64</code></td>
<td></td>
</tr>
<tr>
<td><code>corruptiond64</code></td>
<td><code>/d64/corrupt1.d64,/d64/corrupt2.d64</code></td>
<td></td>
</tr>
<tr>
<td><code>fishd64</code></td>
<td><code>/d64/fish1.d64,/d64/fish2.d64</code></td>
<td></td>
</tr>
<tr>
<td><code>mythd64</code></td>
<td><code>/d64/myth.d64</code></td>
<td></td>
</tr>
<tr>
<td>Amstrad CPC releases</td>
<td>Images of both disks have to be provided in the DSK format.</td>
<td>Spectrum 128 and Spectrum+3 releases did not have pictures. They were small enough to be shipped on a single floppy disk.</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>pawnamstradcpc</td>
<td>dsk/pawn1.DSK,dsk/pawn2.DSK</td>
<td>Amstrad CPC releases came on two floppies. Images of both disks have to be provided in the DSK format.</td>
</tr>
<tr>
<td>Section [RANDOM] configures the random events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>mode</td>
<td>pseudo</td>
<td>Deterministic</td>
</tr>
<tr>
<td></td>
<td>real</td>
<td>Real random</td>
</tr>
<tr>
<td></td>
<td>12345</td>
<td>Seed/salt</td>
</tr>
</tbody>
</table>

| **Section [DEFAULTGUI]** configures the output |
|---|---|---|
| **rows** | 40 | Number of rows |
| **columns** | 120 | Number of columns |
| **align** | left | Currently broken |
| | block |
| | right |

mode	none	Inverted monochrome
	monochrome	Different algorithm
	monochrome_inv	May not work in very terminal
	low_ansi	Mode for the MS DOS pictures
	low_ansi2	Requires xterm -ti vt340
	high_ansi	
	high_ansi2	
	sixel	

| **sixel_resolution** | 1024x768 | Maximum resolution |
| **sixel_forceresolution** | Yes/No | No= Preserve the aspect ratio |
| **low_ansi_characters** | /\|/IMS | Characters with which the |
| **monochrome_characters** | .:=*x$X | Low ansi output is being rendered |
| | | Characters with which the mono- |
| | | chrome output is being rendered. It |
| | | is aramp of increasing intensity: |
| | | Left is dark, right is bright. |

Special characters

		\
		;
		/

		Escape sequence
		Comment
		Escaped ; (Not a comment)
		Escaped \
APPENDIX B. DMAGNETIC.INI FILE

B.1 Example

% dMagnetic --helpini

[FILES]
pawnmag=/usr/local/share/games/magneticscrolls/pawn.mag
pawngfx=/usr/local/share/games/magneticscrolls/pawn.gif
pawnmsdos=/MSDOS/C/PAWN
pawn6d4=/8/PAWN1.D64,/8/PAWN2.D64
pawninspect=/disk/spectrum/pawn.DSK
pawnarchimedes=/adf/pawn.adf
pawnatarixl=/atr/PAWN1.ATR,/atr/PAWN2.ATR
pawnapppleii=/appleii/PAWN1.NIB,/appleii/PAWN2.NIB
guildmag=/usr/local/share/games/magneticscrolls/guild.mag
guildgfx=/usr/local/share/games/magneticscrolls/guild.gif
guildmsdos=/MSDOS/C/GUILD
guilddd64=/8/GUILD1.D64,/8/GUILD2.D64
guildamstradcpc=/disk/amstradpc/guild1.DSK,/disk/amstradpc/guild2.DSK
guildspectrum=/disk/spectrum/guild.DSK
guildarchimedes=/adf/guild.adf
guildatarixl=/atr/GUILD1.ATR,/atr/GUILD2.ATR
jinxtermag=/usr/local/share/games/magneticscrolls/jinxter.mag
jinxtergfx=/usr/local/share/games/magneticscrolls/jinxter.gif
jinxtermsdos=/MSDOS/C/JINXTER
jinxterd64=/8/JINXTER1.D64,/8/JINXTER2.D64
jinxteramstradcpc=/disk/amstradpc/JINXTER1.DSK,/disk/amstradpc/JINXTER2.DSK
jinxterspectrum=/disk/spectrum/jinxter.DSK
jinxterarchimedes=/adf/jinxter.adf
jinxteratarixl=/atr/JINXTER1.ATR,/atr/JINXTER2.ATR
jinxterappleii=/appleii/JINXTER1.NIB,/appleii/JINXTER2.NIB
corruptionmag=/usr/local/share/games/magneticscrolls/corruption.mag
corruptiongfx=/usr/local/share/games/magneticscrolls/corruption.gif
corruptionmsdos=/MSDOS/C/CORRUPTION
corruptiond64=/8/CORRUPTION1.D64,/8/CORRUPTION2.D64
corruptionamstradcpc=/disk/amstradpc/CORRUPTION1.DSK,/disk/amstradpc/CORRUPTION2.DSK
corruptionspectrum=/disk/spectrum/corruption.DSK
corruptionarchimedes=/adf/corruption.adf
corruptionappleii=/appleii/CORRUPTION1.NIB,/appleii/CORRUPTION2.NIB,/appleii/CORRUPTION3.NIB
fishmag=/usr/local/share/games/magneticscrolls/fish.mag
fishgfx=/usr/local/share/games/magneticscrolls/fish.gif
fishmsdos=/MSDOS/C/FISH
fishd64=/8/FISH1.D64,/8/FISH2.D64
fishamstradcpc=/disk/amstradpc/FISH1.DSK,/disk/amstradpc/FISH2.DSK
fishspectrum=/disk/spectrum/fish.DSK
fisharchimedes=/adf/fish.adf
mythmag=/usr/local/share/games/magneticscrolls/myth.mag
mythgfx=/usr/local/share/games/magneticscrolls/myth.gif
mythmsdos=/MSDOS/C/MYTH
mythd64=/8/MYTH.D64
mythamstradcpc=/disk/amstradpc/MYTH.DSK
mythspectrum=/disk/spectrum/myth.DSK
wonderlandmag=/usr/local/share/games/magneticscrolls/wonderland.mag
wonderlandgfx=/usr/local/share/games/magneticscrolls/wonderland.gif
wonderlandd64=/8/WONDERLAND1.D64,/8/WONDERLAND2.D64
wonderlandamstradcpc=/disk/amstradpc/WONDERLAND1.DSK,/disk/amstradpc/WONDERLAND2.DSK
wonderlandarchimedes=/adf/wonderland.adf
wonderlandd64=/8/WONDERLAND1.D64,/8/WONDERLAND2.D64
wonderlandd64=/8/WONDERLAND1.D64,/8/WONDERLAND2.D64

[DEFAULTGUI]
rows=40
columns=120
align=left
align=block
align=right
mode=none
mode=monochrome
mode=monochrome_inv
mode=low_ansi
mode=low_ansi2
mode=high_ansi
mode=high_ansi2
mode=sixel
mode=utf
low_ansi_characters=\|/=abcdefghiklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
monochrome_characters=\|/=\#TX
sixel_characters=\.,=-oxOX@$
sixel_resolution=800x600
sixel_forceresolution=No
Appendix C

Priorities

C.1 Location of .ini files

Highest priority: \texttt{-ini parameter. \\
\~dMagnetic.ini (Home directory) \\
/etc/dMagnetic.ini \\
/usr/local/share/dMagnetic.ini \\
/usr/local/share/games/dMagnetic.ini \\
/usr/local/games/dMagnetic.ini \\
/usr/share/dMagnetic.ini \\
/usr/share/games/dMagnetic.ini \\
/usr/share/dMagnetic/dMagnetic.ini \\
/usr/games/dMagnetic.ini \\
/usr/games/dMagnetic/dMagnetic.ini \\
/usr/share/doc/dmagnetic/dMagnetic.ini \\
/usr/pkg/share/doc/dMagnetic/dMagnetic.ini}

Lowest priority: ./dMagnetic.ini (current directory)

C.2 Configuration

Highest priority: Command line parameters.
Medium priority: Read from the ini file.
Lowest priority: Pre-compiled values
Appendix D

ANSI RGB values

Colours for the low ansi mode are being chosen from this palette:

<table>
<thead>
<tr>
<th>Colour</th>
<th>RGB Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>#000000</td>
</tr>
<tr>
<td>Red</td>
<td>#AA0000</td>
</tr>
<tr>
<td>Green</td>
<td>#00AA00</td>
</tr>
<tr>
<td>Brown</td>
<td>#AA5500</td>
</tr>
<tr>
<td>Blue</td>
<td>#0000AA</td>
</tr>
<tr>
<td>Magenta</td>
<td>#AA00AA</td>
</tr>
<tr>
<td>Cyan</td>
<td>#00AAAA</td>
</tr>
<tr>
<td>Grey</td>
<td>#AAAAAA</td>
</tr>
<tr>
<td>Dark Grey</td>
<td>#555555</td>
</tr>
<tr>
<td>Bright red</td>
<td>#FF5555</td>
</tr>
<tr>
<td>Bright Green</td>
<td>#55FF55</td>
</tr>
<tr>
<td>Yellow</td>
<td>#FFFF55</td>
</tr>
<tr>
<td>Bright blue</td>
<td>#5555FF</td>
</tr>
<tr>
<td>Bright Magenta</td>
<td>#FF55FF</td>
</tr>
<tr>
<td>Bright Cyan</td>
<td>#55FFFF</td>
</tr>
<tr>
<td>White</td>
<td>#FFFFFF</td>
</tr>
</tbody>
</table>
Appendix E

 Compiler defines

E.1 Experimental defines

Defines in this category are not stable, deactivated by default, and may be removed in the next release.

<table>
<thead>
<tr>
<th>Defines</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTAL_SAVEGAME_SLOTS</td>
<td>Use a new savegame format instead of the native ones. Also circumvents a load bug when playing games from the Apple or AtariXL sources.</td>
</tr>
</tbody>
</table>

E.2 Testing defines

Defines in this category are semi-stable. They are activated by default, and may be removed in the next release.
Bibliography

(1) The magnetic scrolls memorial.
 https://msmemorial.if-legends.org/

(2) dMagnetic home.
 https://www.dettus.net/dMagnetic

(3) Play classic text adventure games online.
 http://magneticscrolls.net