
Protecting the copyright of an embedded device with cryptography
Thomas DETTBARN

Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany

Abstract

Abstract– Embedded devices are small computers with a
CPU, memory (for example SRAM), a mass-storage unit
(an external Flash-ROM) and input-/output capabilities.
With enough knowledge about the CPU, an attacker
can deassemble the software, and learn all about the
implemented algorithms, thus accessing and disclosing
intellectual property of the developing company. He
could modify the content, and resale the product under
his own label. Or he could sell verbatim copies of the
device, resulting in lost revenues and potential liability
issues. Therefore some sort of protection method should
be applied, e.g. encryption of the Flash content. This way,
software updates can be given to customers on a regular
basis, without giving too much secrecy away.

I. Introduction

Overview This paper is structured as follows: First,
the principles of cryptography will be shown. Secondly,
a way of enhancing an embedded device’s boot-sequence
by means of decryption will be discussed. Third, a
cryptographic coprocessor will be designed. Fourth a
real-life scenario with the DRM-IP prototyping board
will be used as an example for an application of such
a coprocessor. The paper closes by presenting ideas to
increase the presented level of security even further.
Assumptions This papers makes the following
assumptions:

• An embedded device’s software is supposed to be
undisclosed intellectual property

• The embedded device has SRAM which is
inaccessible from the outside, e.g. via JTAG-ports

• The embedded device is of
von-Neumann-architecture

• The contents of Flash-ROM can be extracted

• An attacker knows which components are used
within the embedded device

• Alteration of the software by somebody else than
the manufacturer is unwanted

• Though less severe, verbatim copying of the
software is unwanted as well

• For convinience reasons, the customer should be
allowed to apply new Flash-images as software
updates to the embedded device

Terminology Encrypting a plaintext x, thereby
transforming it into a ciphertext c is applying an
encryption algorithm f to it:

f(x) = c (1)

Applying the inverse f−1 to it is called decryption

f−1(c) = x (2)

Therefore, the function f has to be injective.
Additionally, f should also be non-structure preserving
and non-commutative. Usually, f is associated with a key

ε for en- and f−1 with δ for decryption:

f(ε, x) = c f−1(δ, c) = x (3)

so that for every ε1 6= ε2 and δ1 6= δ2

f(ε1, x) 6= f(ε2, x) f−1(δ1, c) 6= f−1(δ2, c) (4)

If ε = δ, the function f is called a symetric cipher, if ε 6= δ,
it is called asymetric. Asymetric ciphers like RSA[1]
usually require more complex operations, and would be
unsuitable for copyright purposes.
This paper concentrates on symetric ciphers. Additionaly,
an algorithm associated with a key key is denoted as

fkey(x) = c f−1

key(c) = x (5)

instead of f(key, x).
Two key-encryption Mathematically, the application
of a second key to encrypt the ciphertext is a
concatenation:

fkey1(x) = y fkey2(y) = fkey2 ◦ fkey1(x) = c (6)

Ideally, f is not commutative, so the keys have to be
reversed for decryption:

f−1

key1
◦ f−1

key2
(c) = f−1

key1
◦ f−1

key2
◦ fkey2 ◦ fkey1(x) = x (7)

II. Embedded devices

Like all computers, embedded devices are roughly
divided into two subgroups: The Harvard- and the von-
Neumann architecture[2]. While Harvard-architectures
use a strict separation of software and intermediate data,
von-Neumann computers share their memory between
those two. This allows greater design flexibilty, but
it also requires an extra memory-control unit, which
demultiplexes the address onto the physical compoments.

IO CPU
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

Flash

SRAM
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

IO SRAM Flash
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.. ...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.. ...

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

Memory control
...

.......

.......

.......

......

..

CPU
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

..
.......
......
.......
.......
..............

R
e
q

A
c
k

·············
·············
··

············
··

·············
·············
·············
·············
··

·············
·············
··

············
··

0x000000000x020000000x04000000

····································

····································

····································

····································

Fig.I: Left: A device, following the Harvard-architecture. Each component
(Flash/SRAM/IO) is connected to the CPU via physically separate pathways.
Right: A von-Neumann device. In this example, the Flash is mapped to
address 0x00000000-0x01ffffff, SRAM to 0x02000000-0x03ffffff, and the Input-
Output devices to 0x04000000 and up.

After sending a read- or write-request to the memory-
controller, the CPU has to wait until this request has been
acknowledged. Normally this is being realised as a simple
Req/Ack handshaking protocol. The memory control unit
takes care of all the components timing-constraints.
Booting Upon reset, the program counter within the
CPU is typically set to an address within the Flash-
ROM. Flash-ROM is relatively slow, so for speed reasons,
its contents are mostly copied into the SRAM at boot-
time[3].

Flash CPU SRAM
..

.......

.......

.......

.......

.......

.......

.......

.......

.......

... ...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.. ..

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
... ...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.. ..
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

|| |||||||||||||||| || ||||||||||||||||

Flash CPU SRAM
|| ||||||||||||||||

||

Fig.II: Top: during the boot-process, the program is loaded from the Flash-ROM
and copied into the SRAM. Bottom: After the boot-process has been finished, the
program is read and excecuted solemly from the SRAM.

Once the main program has been copied, an unconditional
jump is being executed to the destination address in the
SRAM. An example for such a bootloader, performing
exactly that task is given in Src I.

void (*sram)(void)=0x02000000;

for (int i=0x00000000;i<0x00500000;i+=4)

{

((*volatile int)0x02000000+i)=

((*volatile int)0x01000000+i);

}

dataCacheFlush();

instCacheInvalidate();

sram();

Src I. A relativly simple boot loader: Parts of the ROM are copied into the SRAM.
After that, the CPU is instructed to set the program counter to the SRAM. If the
CPU is euqipped with cache, it is crucial that the SRAM is in a consistend state
after booting. This is illustrated by the dataCacheFlush() and instCacheInvalidate()
functions.

The for-loop performs the actual copying from a section
within the Flash-ROM into the SRAM. Afterwards, the
function sram() works as a placeholder for the first
SRAM-address. To make sure that the program counter
does not point to invalid memory after the jump, possible
data and instuction caching needs considered. If a data
cache exists, it needs to be sure that all data copied is
actually written to SRAM. This is usually accomplished
by ”flushing” the data cache at the end of the copy loop.
In addition, if an addition, if an instruction cache exists,
this one needs to be invalidated, to make sure that correct
and current program instructions are fetched.
Decryption while booting The fact that data and
software share the same memory also has the secondary
effect that a program can be modified before it is being
executed. Possible scenarios for those modifications
include the inflation of a compressed image, or the
application of last-moment patches. Another possible
modification can be used for copyright protection; by

applying formula (2) to an encrypted image c within the
Flash. The commands within the for-loop of Src I can be
changed to the ones in Src II. Thus, c is being decrypted
to the program x before being interpreted by the CPU.

((*volatile int)0x02000000+i)=

finv(key,((*volatile int)0x01000000+i));

Src II. A modified bootloader, capable of decrypting.

Once the program x is in the SRAM, it has the same
features as without the cryptographic booting sequence.

Flash
”c”

CPU SRAM
”x”

f−1

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
... ...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.. ..
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

...
......
.......
.......
.......
..

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
... ...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.. ..
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

...
.......
......
.......
.......
..

|| |||||||||||||||| |||||||||||||||||||||||||||||||||| ||||||||||||||||

Flash
”c”

CPU SRAM
”x”

f−1

|| ||||||||||||||||

||

||||||||||||||||||||||||||||||||||||

|||||||||||||||||||||||||
|||||||
||

| | | | | | |
| | | | | | |
| |

Fig.III: Top: Instead of copying the progam verbatim into the SRAM, it is rerouted
through a decryption function. Bottom: Once the boot-sequence has ended its run,
the program is run from the SRAM just like before.

Hence, the image within the Flash-image c is changed
into an executable program x at boot-time. Without the
proper key key, it is impossible to run or deassemble it.
Moreover, it cannot be modified.

III. Serial numbers

In addition of protecting the software against unwanted
analysation and modification, using different keys
key1, key2, . . . , keyn in n embedded devices ties the Flash-
image to a specific one. In doing so, it can not be
transfered from one device to the other: According to
formula 4, this would lead to an illegal program within
the SRAM, which can not be executed.
ESN Certain types of Flash-ROMs have the feature of a
uniqe electronic serial number (ESN), which is stored in
a dedicated cell. Sending a special command-sequence to
the Flash unlocks this cell for read-requests. For example,
with Flash components manufactured by Spansion this
sequence would be writing 0x00aa to address 0x0aaa,
then 0x0055 to 0x0555 and finally 0x0088 to 0x0aaa[4].
Every subsequent read-request is then rerouted to this
cell. To exit, the sequence has to be repeated, but
replacing the last write with 0x0090 instead of 0x0088.
However, there are other types which have a write-once
cell instead of a pre-written serial number. Flash-ROMs
with this feature might be used to create a fake ESN.
Those types can be identified by reading the ROMs
features through the Common Flash Interface (CFI).
Higher protected keys The serial number alone would
be a weak key. The Flash-ROM could be extracted from

the embedded device and read relatively easy. Once in
possession of the serial number keyS, an attacker could
read the encrypted contents c in the Flash as well and
write his own decryption algorithm

f−1

keyS(c) = x. (8)

This way he has unlimited access to the unencrypted
program x. He could copy, analyse or modify it. Ergo, a
second, higher protected key keyH should be generated
as well. This second key should be applied to x according
to formula (6):

fkeyH ◦ fkeyS(x) = c (9)

Applying the two keys in the correct order is crucial: It
can be easily observed that fkeyS ◦ fkeyH(x) results in
weak copyright protection, as with this permutation, an
attacker could perform the operation

f−1

keyS(c) = f−1

keyS ◦ fkeyS ◦ fkeyH(x) = fkeyH(x) = y (10)

He could use the intermediate result y together with his
own serial number keyS′ to create

fkeyS′(y) = fkeyS′ ◦ fkeyH(x) = c′ (11)

Even without the knowledge of keyH , he could clone
the embedded device, replacing c with c′. At bootup,
it performs an

f−1

keyH ◦ f−1

keyS′(c
′) = f−1

keyH ◦ f−1

keyS′ ◦ fkeyS′ ◦ fkeyH(x) = x

resulting in an useable device, running the program x,
even though he is still unable to modify it. Therefore,
the keys should be applied in fkeyH ◦ fkeyS(x) order. To
replace the serial number, keyH has also to be known to
the attacker. However, a commutative f can cause the
same problem.

IV. Designing a coprocessor

The decryption algorithm can be implemented in
software. But, this would it make part of the
(unencrypted) bootloader, thereby increasing its size.
This approach also bears the danger of being deassembled:
An attacker might get hold of the Flash-ROM-image c,
deassemble the bootloader, and search for the hidden
key keyH . With this knowledge, he could implement
the decryption algorithm in formula (2) or (7) on his
own, thereby giving him access to the encrypted part
x. One possible solution would be to make c absolutely
inaccesible to the customer. This also means that he will
not be able to apply software updates to it in the future.
Decryption in hardware Another solution is to keep
the key and the decryption algorithm completly out
off the Flash-ROM, and thus off the CPU. This leaves
a hardware implementation as the next logical option,
which has also the advantage of being faster and it has a
smaller memory-footprint. A cryptographic coprocessor,
interconnected to the CPU via the memory-control unit
is an efficent solution. Every operation inside this
coprocessor will be shielded from the bootloader, and the
CPU core itself does not have to be changed.

Crypt IO SRAM Flash
..

.......

.......

.......

.......

.......

.......

.......

.......

.......

... ..
.......
.......
.......
.......
.......
.......
.......
.......
.......
... ..

.......

.......

.......

.......

.......

.......

.......

.......

.......

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

Memory control
...

.......

......

.......

.......

..

CPU
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

..
.......
......
.......
......
...............

R
e
q

A
c
k

············
··

·············
·············
··

·············
·············
·············
·············
··

············
··

·············
·············
··

·············
·············
··

············
··

0x000000000x020000000x040000000x18700000

····································

Fig.IV. A cryptographic coprocessor has been added to a von-Neumann computer.
It has been mapped to the address 0x18700000 and up through the memory control
unit.

The CPU, instead of decrypting the blocks c1, c2, . . . , cn

on its own, hands them to the coprocessor. The
unencrypted results x1, x2, . . . , xn are then read back and
can be processed otherwise.
Interfaces CPUs for embedded devices are either 8-,
16- or 32-bit wide. Modern cryptographic algorithmns
require blocks of 128 bit or more to guarantee high-
security protection. Meaning, that a register bank has
to integrate a number of smaller values into a larger one
before the coprocessor can conduct its operations.

..

......

.......

.......

.......

......

... ...
......
.......
.......
.......
......
.. ...

......

.......

.......

.......

......

.. ...
......
.......
.......
.......
......
..

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

f−1

..
.......

..

.......

.......

......

.......

......

...

..

.......

......

.......

......

.......

...

...

.......

......

.......

.......

.......

...

..

......

.......

......

.......

.......

...

.................................

.................................

.................................

.................................

...

...

...

...

DataIn

DataOut

Addr
··············
··············

··
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
···

·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
·············
··

··

··

··

··

···

···

···

···

····································
··
··············
·· ····································

··
··············
·· ····································

··
··············
·· ····································

··
··············
··

····································
··
··············
·· ····································

··
··············
·· ····································

··
··············
·· ····································

··
··············
··

······································ ················

······································ ················

······································ ················

······································ ················

·· ················

\\\

\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\

\\

//

/////////////
/////////////
/////////////
/////////////
/////////////
/////////////
/////////////
/////////////
/////////////
////////////

///

c

x

k
ey

Fig.V. The internals of a coprocessor: The core f−1 requires 128-bit values for its
operation. To connect it to a 32 bit CPU, the data has to be stored in 4 32-bit-
registers first.

The simplest way to do so is by assigning an address range
to the device through the memory control unit. Each
address corresponds with a certain register. On software
level, each of those can be written independently. Writing
into the last register is the signal for the cryptographic
core to start processing. Reading from the same address
range returns the decrypted block. This also means
that the core has to be able to hold its result until the
last value has been read. On this side a multiplexer is
used to determine which part of the result is returned
upon a read-request. Fig V shows a schematic for such
an interface. For a 32-bit-CPU the for-loop within the
bootloader would look like the one Src III.

for (i=0x00000000;i<0x00500000;i+=16)

{

((*volatile int)0x18700000)=

((*volatile int)0x01000000+i);

((*volatile int)0x18700004)=

((*volatile int)0x01000000+i);

((*volatile int)0x18700008)=

((*volatile int)0x01000000+i);

((*volatile int)0x1870000c)=

((*volatile int)0x01000000+i);

((*volatile int)0x02000000+i)=

((*volatile int)0x18700000);

((*volatile int)0x02000004+i)=

((*volatile int)0x18700004);

((*volatile int)0x02000008+i)=

((*volatile int)0x18700008);

((*volatile int)0x0200000c+i)=

((*volatile int)0x1870000c);

}

Src III: A bootloader, reading the contents of the Flash-ROM (mapped at
0x01000000), sending it to the coprocessor (mapped at 0x18700000), and writing
the results into the SRAM (mapped at address 0x02000000).

Four 4-byte words are read subsequently from the
Flash (mapped to address 0x01000000) and send to the
coprocessor (mapped to address 0x18700000). After
writing the last register, the coprocessor starts working.
Given that the memory-control unit is equipped with
Request-/Acknowledge handshaking signals, the next
instruction can read the result back from the coprocessor
and store it inside the SRAM (mapped to 0x02000000),
because the CPU is on hold until the coprocessor finishes.
Obtaining the key without the CPU By sending
a special sequence of commands to the Flash-ROM, the
CPU instructs it to return its serial number at the next
read-request. If the coprocessor is designed to snoop on
the connection between the CPU and the Flash, it could
wait for this sequence, and read it off the bus as soon as
it is returned into the CPU. Now it is impossible to send
a fake ESN by changing the bootloader.

Crypt IO SRAM Flash
..

.......

.......

.......

.......

.......

.......

.......

.......

.......

... ..
.......
.......
.......
.......
.......
.......
.......
.......
.......
... ..

.......

.......

.......

.......

.......

.......

.......

.......

.......

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

Memory control
...

......

.......

.......

.......

..

CPU
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

..
......
.......
......
.......
...............

R
e
q

A
c
k

·············
··

·············
·············
·

·············
·············
·············
·············
··

·············
··

·············
·············
·

·············
·············
··

·············
·

0x000000000x020000000x040000000x18700000

····································

•··
·············
·············
·············
·· ·······
·········

Fig.VI. By interconnecting the Flash-ROMs busses with the cryptographic
coprocessor it is possible to read the serial number directly into the core.

A statemachine within the coprocessor waits for the
access-sequence, which triggers a chip-enable for the key-
registers. Fig. VII illustrates the reading of the first 32
bits of the key, in this case 0x12344f5e.

clk

addr

flashin

flashout

cereg

key15..0

key31..16

key47..32

.........

.......

.......

.

...................................
......
.......
..
00000aaa

...................................
......
.......
..
00aa

...................................
.......
.......
.
0000

........

.......

......

...

..................................
.......
.......
..
ffff

...................................
.......
......
..
ffff

...................................
.......
......
..
ffff

...
.......
.......
.

....................................

....................................

....................................

....................................

...
.......
.......
.
00aa

....................................

....................................

....................................

....................................

....................................

....................................

....................................

..

...
......
.......
..
00000555

...
......
.......
..
0055

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

...
.......
.......
.

....................................

....................................

....................................

....................................

...
.......
.......
.
0055

....................................

....................................

....................................

....................................

....................................

....................................

....................................

..

...
......
.......
..
00000aaa

...
......
.......
..
0088

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

...
.......
.......
.

....................................

....................................

....................................

....................................

...
.......
.......
.
0088

..
.......
......
...

....................................

....................................

....................................

....................................

....................................

....................................

..

...
......
.......
..
00000000

...
......
.......
..
0000

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

...
.......
.......
.

....................................

....................................

....................................

....................................

...
.......
.......
.
1234

....................................

....................................

....................................

....................................

....................................

....................................

....................................

..

...
......
.......
..
00000004

....................................

....................................

....................................

....................................

....................................

..
.......
.......
..
1234

....................................

....................................

....................................

....................................

...
.......
.......
.

....................................

....................................

....................................

....................................

...
.......
.......
.
4f5e

....................................

....................................

....................................

....................................

....................................

....................................

....................................

..

...
......
.......
..
00000008

....................................

....................................

....................................

....................................

....................................

....................................

....................................

...
.......
......
..
4f5e

....................................

....................................

...
.......
.......
.

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

..

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

Fig.VII. After sending the sequence to switch the Flash to the ESN-area, a
chip-enable signal cereg is triggered, and the serial number is stored within the
coprocessors registers.

For obvious reasons, the instructions to switch the Flash
to the ESN-area, reading the serial number, and returning
to standard Flash-ROM have to be executed from a
location within the SRAM. Executing this sequence from
the Flash-ROM is impossible.

V. Rijndael-128 AES

Virtually any algorithm f−1 can be used in the decryption
core, ranging from a simple XOR-array to a modern
elliptic curve cipher. For a hardware implementation the
Rijndael-128 algorithm as defined in [5] should be chosen,
because it combines both a low complexity and a high
protection level.
History In 1998 the Electronic Frontier Foundation
presented a brute-force attack against the DES-
algorithm[6, 7, 8]. The 56-bit cipher was broken in less
than 60 hours. This was a dramatical demonstration
that the federal encryption standard (which has been in
place since 1976) became vulnerable. The shock of this
presentation cumulated in a call for algorithms by the U.S.
government for a new Advanced Encryption Standard
(AES), which in turn would be a Federal Information
Processing Standard (FIPS). It was a competition,
consisting of two rounds. In the first round, which
took place over a period of eight months, each algorithm
was analysed in depth. The german contribution,
MAGENTA[9], handed in by the Deutsche Telekom AG,
did not advance beyond the first round and was in fact
broken during the questionaire of its presentation[10].
The finalists for the second round consisted of MARS,
RC6, Rijndael, Serpent and Twofish. In the end, Rijndael
was adopted as the algorithm for the new standard.
The algorithm Rijndael is a block-cipher. Even though
it is applicable to 192- and even 256-bit blocks, the
standard only covers 128 bit blocks. However, the key
sizes covered by AES are 128, 160, 192 and 256.
The encryption of a 128-bit block is performed in a
number of rounds, depending on the keysize. In each
round, the key is iterated and XORed with the block.
Afterwards, the result is fed through 3 distinct functions
(SubBytes, MixCols, ShiftRows), to further increase

security.

...

......

......

....... ...
......
......
....... ...

......

......

....... ...
......
......
....... ...

......

......

.......
.................................

...

.......

......

...... ...
.......
......
...... ...

.......

......

...... ...
.......
......
...... ...

.......

......

......
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

...

......

......

....... ...
......
......
....... ...

......

......

....... ...
......
......
....... ...

......

......

.......
.................................

...

.......

......

...... ...
.......
......
...... ...

.......

......

...... ...
.......
......
...... ...

.......

......

......
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

..

......

.......

..... ..
......
.......
..... ..

......

.......

..... ..
......
.......
..... ..

......

.......

.....
.................................

..
.
.......
...

...

................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

.
.......
...

.............................

.....................

In

Out

···

···

·············...·····························

···

···

·············...·····························

··key′1 key′2

Start
Sub

Bytes
Shift
Rows

Mix
Cols key1 Start

Sub
Bytes

Shift
Rows

Mix
Cols key2⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Fig.VIII. A graphical representation of Rijndael-128 AES with 2 keys

The standard, along with a graphical representation of
the algorithm can be downloaded of the internet as FIPS-
197. It should also be noted that Rijndael-256 has been
adopted by the NSA as the encryption standard for TOP-
SECRET data[11].
Key chainig After iterating the key eleven times for one
block, the question arises what to do with it. Resetting
the key after each decrypted block would lead to a
vulnerability to statistical attacks, as blocks with the
same content in x can be spotted in c as well. Iterating
the key across block borders (called key-chaning) prevents
this, but is only possible for sequential block-reads.

c1 c2 c3 cn

x1 x2 x3 xn

f−1 f−1 f−1 f−1

...
......
.......
......
.......
... ...

......

.......

......

.......

... ...
......
.......
......
.......
... ...

......

.......

......

.......

...

...

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

• • •key
key′ key′′

c1 c2 c3 cn

x1 x2 x3 xn

f−1 f−1 f−1 f−1

...
.......
.......
.......
......
.. ...

.......

.......

.......

......

.. ...
.......
.......
.......
......
.. ...

.......

.......

.......

......

..

...
......
.......
......
.......
.....................

..
......
.......
......
.......
.....................

... · · ·
......
.......
......
.......
.....................

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

|||
|||||||
||

| | | | | | |
| | | | | | |
| |

• • •key

Fig.IX. Top: Chained key architecture, Bottom: Each new block resets the key

Instead of key-chaining, the address on where the block
has been saved could be used as secondary key.

VI. Designing the decryption core

Rijndael was designed with the purpose of being easy to
implement in hardware. Most of its operations can be
performed by XOR-gates and bit-shifts. For a decryption
core, the inverse functions have to be translated into
Verilog or VHDL code. They are explained in great detail
and with numerous examples in FIPS-197, and can be
implemented as followed:

MixCols−1 An XOR-gate array performs this operation.
For the first decryption round it has to be skipped,
e.g. by a multiplexer.

ShiftRows−1 Being a Bit-permutation, this is a trivial
operation in hardware and can be implemented by
rerouting data-busses.

SubBytes−1 Even though the standard describes this
operation as arithmetic, it should be implemented
as a lookup-table or 16x256 bytes of ROM for speed
reasons.

KeyIt The iteration of the keys can be implemented with
4x256 bytes ROM and an XOR-gate array.

According to the standard, KeyIt is not injective. For
each block the keys have to be iterated in advance. In
every round, those are 16 bytes which have to be stored.
Rijndael-128 expects a minimum of 11 cipher rounds for
safe encryption. Therefore, a total of 176 bytes have to
be cached in an internal register-bank. A counter is used
to control the contents: After it has been XORed, the key
becomes obsolete and can be overwritten. Iterating the
key and encrypting the text can be performed in parallel.
The hidden key keyH is hardwired into the core, and thus
impossible to change or to be read externally.

...
.......
........
...

key2

...
.......
........
...

key1

...
.......
.......
...

...

.......

......

..
KeyIt

..

.......

.......

..
176Byte Cache

Data

⊕

MixCols−1

ShiftRows−1

SubBytes−1

... ·...
......
.......
......

x

...

......

.......

..

...

.......

......

..

..

.......

.......

..

...
......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

.............................
......
.......
......·..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....................................

...
........
.......
...

......................
......
.......
......

..
......
.......
......

·...
.............................
......
.......
......

..
......
.......
......

.............................
......
.......
......

.............................
......
.......
......

keyS c

keyH

..

...

...

..

...

... ..
...
...

Fig.X. AES with 2 keys in hardware. The dotted blocks are registers, the other ones
represent combinatorical blocks.

Fig. X shows a diagram for implementing the Rijndal-
128-algorithm with two keys keyS and keyH in hardware.
Depending on the programming of the two multiplexers
in the top-left corner, the core can be used for chained-
as well as for resetted key mode. Prior to the first round,
the input c has to be stored into the Data register. For
the very first block, key1 and key2 have to be initialised
with the serial number keyS and the higher protected key
keyH . To counter side-channel attacks, the output x has
to be buffered by an extra set of registers.

VI. Results

The Fraunhofer Institute for Integrated Circuits IIS used
the presented design to enhance a prototyping board
with copyright protection. The board[12] is capable of
decoding signals encoded according to the Digital Radio
Mondiale (DRM)-Standard[13]. For that, it uses two
Xilinx Virtex-II and one Altera Excalibur FPGA. For
demonstration reasons, the board has also been equipped
with an ARM9-core, which handles the audio playback.
Its software is confidential should not be disclosed. On
the other hand, the nature of such a prototyping board

requires constant updates. It would be impractical to
exchange hardware each time a new feature has been
added. With a cryptographic coprocessor aiding the boot-
process, it was possible to such updates via the E-mail.
Time-complexity Our implementation of
the decryption core is capable of performing one round
per instruction cycle. It uses two keys. A whole 128-
bit block therefore needs 22 cycles. Running at 25Mhz,
this gives a theoretical throughput of 18.2MByte/s. The
whole program for the ARM9-core fitted into 800kBytes,
which could be decrypted within 21ms.
Gate-count The implementation on our prototyping
board required the following number of NAND2-gates:

Table I: Gatecount

Block XOR SubBytes MixCols Cache KeyIt

GateCount 223 9043 1485 5835 2534

With some additional optimizations in the synthesis-
stage, the whole core cumulated in 16879 NAND2-gates.
Memory-consumption The coprocessor is completly
encapsulated, its cache internal. To operate, it needs no
space within the SRAM. However, due to the fact that
Rijndael-128 works on 16-Byte blocks, the program in the
Flash might have to be padded with up to 15 extra Bytes,
to make its size divisible by 16.
Extended production time Owing to the fact that
each device needs a unique Flash-image, an automated
production becomes complicated. Once it has been
assembled, the serial number has to be read. Afterwards
the program has to be encrypted and stored within the
Flash.

VII. Hardening security

The methods presented in this paper have shown a way
of protecting the software of an embedded device against
unwanted alteration and software piracy. To increase the
level of security some extra measures can be taken into
consideration as well.
Using two distinct decryption algorithms A
different decryption algorithm can be used.

fkeyH1 ◦ gkeyH2 ◦ fkeyS ◦ gkeyS′(x) = c (12)

g−1

keyS′ ◦ f−1

keyS ◦ g−1

keyH2
◦ f−1

keyH1
(c) = x (13)

If one of the two algorithms should ever be broken, the
program is still encrypted with the other one, leaving the
protection intact.
Chaining the blocks By using the last decrypted block
or a checksum of it as salt during decryption will chain
the decrypted results to their predecessor. Consequently,
changing blocks at random to figure out which of them
are used to vital information will render all subsequent
ones useless.
Encrypting the SRAM If the SRAM is not in the same
package as the CPU, its contents should be encrypted
as well. A second, transparent cryptocore between the
memory-controller and the SRAM can be implemented.
The read- and write-requests happen at random, and not
sequentially. A chained key architecture can not be used.
To counter statistical attacks the address can be used
instead of keyS as the second key. Such a core must also

be capable of encryption.

References

[1] T. Cormen, C. Leierson, R. Rivest, C. Stein,
”Introduction to Algorithms (second edition)”,
pp881-887, ISBN 0262032937, MIT Press 2003

[2] W. Wolf, ”Computers as Components: Principles
of Embedded Computing System Design”, ISBN
155860541X, Morgan Kaufman Publishers 2000,
pp58-59

[3] A. Sloss, D. Symes, C. Wright, ”ARM System
Developer’s Guide”, ISBN 1558608745, Morgan
Kaufman Publishers 2004, p13

[4] ”Am29LV320D Datasheet”, Spansion, July 11,
2005, pp30

[5] Federal Information Processing Standards,
”Announcing the ADVANCED ENCRYPTION
STANDARD (AES)”, fips-197, November 26, 2001

[6] Federal Information Processing Standards, ”Data
Encryption Standard (DES)”, fips-46-3 (third
revision), October 25, 1999

[7] W. Press, S. Teukolsky, W. Vetterling, B.
Flannery, ”Numerical Recipes in C++”, pp304-
308, ISBN 0521750334, Cambridge University
Press 2003

[8] John Gilmore, ”Cracking DES: Secrets of
Encryption Research, Wiretap Politics and Chip
Design”, Electronic Frontier Foundation, ISBN
1565925203, O’Reilly Media 2000

[9] K. Huber, S. Wolter, ”Telekom’s MAGENTA
algorithm for en-/decryption in the gigabit/sec
range”, ICASSP 1996 Conference Proceedings,
volume 6, pages 3233-3235, 1996

[10] R. Weis, ”AES und Attack”, ISSN 0930-1054, CCC
Datenschleuder 80, 2002

[11] The Comittee on National Security Systems,
”National Policy on the Use of the Advanced
Encryption Standard (AES) to Protect National
Security Systems and National Security Informa-
tion”, CNSS Policy No. 15, Fact Sheet No. 1, June
2003

[12] F. Mayer, M. Schlicht, A. Heuberger, S. Melzer,
”Chipset Development for Digital Radio Mondiale
(DRM)”, Proceedings of ICCE05, 10.-12.01.2005,
Las Vegas, USA

[13] EBU, ”Digital Radio Mondiale (DRM) System
Sepcification (V 2.1.1)”, ETSI Standard ES
201980, 2004

[14] B. Schneier, ”Applied Cryptography”, ISBN
0471117099, John Wiley and Sons 1996

[15] A. Menezes, P. Oorschot, S. Vanstone, ”Applied
Cryptography”, ISBN 0849385237, CRC Press
LLC 1997

[16] Anonymous, ”All Hackers Need To Know About
Elliptic Curve Cryptography”, pp03, ISSN 1068-
1035, Phrack Magazine 63, July 30, 2005

