
8.2-4

Using Divide-And-Conquer on Custom Lengthed Fourier Transforms
Thomas DETTBARN, Frank MAYER

Fraunhofer Institute for Integrated Circuits IIS, Erlangen, Germany

Abstract– Fourier Transforms (FTs) are the key
to all modern, OFDM-based (Orthogonal Frequency
Division Multiplexing) transmission schemes. This
paper demonstrates the principles and the efficient
implementation of arbitrary length FTs, using divide
and conquer techniques for decomposition into ”atomic”
transforms. Using ”Digital Radio Mondiale” as an example,
we will present generalized FT processing hardware, its
complexity, processing time, precision and design re-use.

I. Introduction

Fourier Transform A Fourier Transform FTn is an
isomorphism mapping a signal with n samples from time
to the frequency domain. Basically this is nothing more
than a multiplication using the Vandermonde-matrix Vn :

















1 1 1 · · · 1
1 ω1

n ω2
n · · · ωn−1

n

1 ω2
n ω4

n · · ·ω
2(n−1)
n

...
...

...
. . .

...

1ωn−1
n ω

2(n−1)
n · · ·ω

(n−1)2

n































x0

x1

x2

...
xn−1















=















y0

y1

y2

...
yn−1















(1)

Where ω1
n = ωn = cos (2π/n) − sin (2π/n) j, j2 = −1 are

called Twiddle factors [1]. The time efficiency is θ(n2).
FT2d, a special case: Instead of evaluating each output
separately, a shortcut is to re-use previous results. The
circuit in Fig. 1 is equivalent to y = V4x:

....................................

..

..
.

.......
.......
..

..
........
.......
.......
..........

....................................

..

..
........
.......
.......
..........

....................................

..
.......
.......
.......
.........

......................................

.............
.............
.............
.............
.............
.............
.............
...................
................

...
........

•

..................................

..................................
•

•

•

•

xA

ωR
n

xB

•

•

•

•
×

+

−
−

ω0
4

ω0
4

ω0
4

ω1
4

..........

..........

..........

..........

x0

x2

x1

x3

y0

y1

y2

y3

=

x′
A

x′
B

xA

ωR
n

xB

x′
A

x′
B

•

•

.................................

.................................

.........

..

..

..

..

··

····································

····································

··

··

Fig. 1. Left: A DFT2 circuit. Right: 3 DFT2 form one FFT4

The left circuit in Fig. 1 implements a Discrete Fourier

Transform with 2 in- and 2 outputs (DFT2) so-called
Butterfly. For a FT2d+1 two DFT2ds can be connected:

DFT2d

DFT2d

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

•
•

•
•

•
•

•
•

..

..

..

..

..

..

..

..
..................

..................
..................

..................

....................................

..

....................................

..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

....................................

.......
.......
.......
.......
.......
.......
........
.......
.......
.......
.......
..

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

....................................

··

··

··

··

Fig. 2. Two connected FFT2ds form an FFT2d+1

This way it takes no more than n log2 n multiplications to
calculate the FTn, plus an additional permutation of the
inputs. This subset of FT is called Fast Fourier Transform,
or FFTn, which is why most implementations are FFT2ds,
restricting the input length to 2d.

II. Divide and Conquer

The problem is this: What if n 6= 2d? One solution is to
increase the size of the input vector to the next power of
2, with either Zero-Padding or Hawkins-Interpolation[2].
However, these two approaches create new elements in the
output vector which could result in slowing down later

calculations, and are more vulnerable to rounding-errors.
Hence it is much smarter to decompose n into its d prime-
factors instead

n = p1 · p2 · . . . · pσ · . . . · pd (2)

and implement every stage as a special DFTpσ, which
takes npσ multiplications. Consequently, it is faster
than the matrix-multiplication, and more robust than
approximation. Again, each stage re-uses the output of
the previous one as the input. The connecting pattern is
obvious when visualized as in Fig. 3:

Permutation
σ = 1

σ = 2

σ = 3

..
.......
.......
.......
...

• • • • • • • • • • • • • • • • • •

• • • • • • • • •• • • • • • • • •

• • •• • •• • •• • •• • •• • •

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

··· ··· ···
··· ··· ···

···
···

···
···

···
···

································· ································· ································· ································· ································· ································· ································· ································· ·································

xλ

x′
λ

λ=0 λ=n−1

y0 yλ yn−1

Fig. 3. Connecting the DFTpσ

Even though it is possible to implement the DFTpσ as
butterflies, it is better to implement them as a multi-
plication with Vpσ , which is in stage σ for ”Column” λ

x′

λ =

pσ−1
∑

k=0

xα(λ,σ,k) · ω
β(λ,σ,k)
n (3)

III. Address Generating Units (AGUs)

The remaining problem of calculating the FT is to
define the two address generating functions α(λ, σ, k) and
β(λ, σ, k). Comparison between the Vandermonde-matrix
and the connect pattern reveales that those functions are

α(λ, σ, k) = Lpσ ·

⌊

λ

Lpσ

⌋

+ kL + (λ mod L) (4)

β(λ, σ, k) = (kR(λ mod Lpσ)) mod n (5)

L =

σ−1
∏

i=1

pi R =

d
∏

i=σ+1

pi (6)

Where L is the product of the already processed prime-
factors, and R is the product of the remaining ones.
α and β are valid for calculating a FTn of any size.
However, because of the modulo-operations it is inefficient
to implement α and β directly in hardware. A good
solution is to calculate α and β offline and make them
available as a lookup table or as special counters. Again,
the easiest stages are those where pσ = 2, hereby all the
AGUs are regular Up-By-One-Counters.

IV. Implementation

To demonstrate the Divide and Conquer technique we use
Digital Radio Mondiale (DRM) [3] as an example. Because

of the different length of the OFDM symbols, FT288,
FT256, FT176 and FT112 are required; in addition several
fractional length Inverse FTs (IFTs) are used.
In our implementation input samples are stored and
processed in a central memory, which provides multiple
input- and output-paths for data-access. We also used
a strict separation of the data-path (Butterfly) and
addressing logic (AGU), as shown in Fig. 4.

....................................

..

×

+

−
−

.............
.............
.............
........................
................
..

........
.......
.......
..........

....................................

..

..
........
.......
.......
..........

....................................

..
.......
.......
.......
.........

......................................

.............
.............
.............
.............
.............
.............
.............
...................
................

...
........

•

..
.......
.......
.......
......
.......
.......
..................

......

.......

......

.......

..
Register

...
....................................

.......

.......

.......

.......

.......

.......

.......

.......

..

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

...
...

...............
•

..

...
......
........................

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

..
......
.......
......
.......
.......
.......
......
..

R
A

M
R

O
M

λ-AGU
λ-AGU
λ-AGU

..

.......

.......

.......

......

.......

..

...

...

α-AGU
α-AGU
α-AGU

..

.......

.......

.......

......

.......

..

...

...

β-AGU
β-AGU
β-AGU

...

.......

......

.......

.......

.......

...

...

...

...
......
.......
......
.......
.......
.......
......
.........................

..
.......
.......
.......
......
.......
......
.......
.........................

..
.......
.......
.......
......
.......
......
.......
.........................

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

..

...

...

..

..

.......................

.......................

.......................

.....................................
..
..
..
..
..
..
..
..
..
..
..
..
..
...

Fig. 4. A circuit for Custom Lengthed FTs

The butterfly together with a register and a multiplexer
form the multiply-accumulate. Two α-AGUs and two read
ports plus one β-AGU and a third read port provide the
inputs, while two λ-AGUs and two write ports store the
results. The AGUs are implemented as special counters.
Permutation of the input vector Figure 2 shows
that a permutation of the input may be required. Due
to using separate memories for in- and output data in our
system, this permutation can be done on the fly, while
copying input data to output memory. The algorithmn to
get the correct permutation is a recursive one and is pre-
calculated:

1.Start with an ordered set 0, . . . , n − 1, and at stage
σ = d

2.In stage σ create pσ subsets, and put every pσth
element in one of them.

3.If the subsets contain only one element, finish. If
not, decrease σ and repeat step 2 with each subset.

This will produce a tree-like structure, with the bottom
leaves as the correct permutation. For a FT18 the tree
would look like in Fig. 5:

0 1 2 3 4 5 6

· · · · · ·

7 8 9 10 11 12 13 14 15 16 17

0 3 6 9 12 15 1 4 7 10 13 16 2 5 9 11 13 17

0 9 3 12 6 15 1 10 4 13 7 16 2 11 5 13 9 17

0 9 3 12 6 15 1 10 4 13 7 16 2 11 5 13 9 17.................................
.......
.......
................................

.......
.......
................................

.......
.......
................................

.......

.......
................................

.......

.......
................................

.......
.......
................................

.......
.......
................................

.......
.......
................................

.......
.......
................................

.......
.......
................................

.......
.......
................................

.......
.......
................................

.......

.......
................................

.......

.......
................................

.......
.......
................................

.......
.......
................................

.......
.......
................................

.......
.......
................................

........................

........................

...

...

..

........................

...

...

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

··
······
··

··
·······
···

··
·······
···

······
······
····

······
······
····

······
······
····

······
······
····

······
······
····

······
······
····

······
······
····

······
······
····

······
·······
···

······
·······
···

Fig. 5. The permutating tree for FT18

V. Results

Speed Table I shows the number of multiplications:

Table I: Number of multiplication

Algorithm θ(n) FT288 FT256 FT176 FT112
Zeropadding dne log

2
dne 4608 2048 2048 896

Hawkins-Int. dne log
2
dne 4608 2048 2048 896

Vandermonde n2 82944 65536 30976 12544
Divide & Conquer

P

npσ 3168 2048 2640 1232

Regarding the number of multiplications it is beneficial for
divide and conquer that the input length is not too close
to the next power of 2 and the pσ are small. If memory
access is considered, a multiply-accumulate stage requires
2R/1W, whereas a butterfly-stage requires 3R/2W.

Table II: Number of memory-accesses
Algorithm θ(n) FT288 FT256 FT176 FT112
Zeropadding dne log

2
dne 23040 10240 10240 4480

Hawkins-Int. dne log
2
dne 23040 10240 10240 4480

Vandermonde n2 248832 196608 92928 37632
Divide & Conquer

P

npσ 12384 10240 9328 4592

Thus our implementation is superior in the number of
memory-accesses in most cases.
Precision With a real-life DRM-Signal as input, the
four algorithms differed from GNU Octave’s build-in FFT
function by the values shown in table III.

Table III: Maximum absolute/relative differences

Algorithm f(x) FT288 FT256 FT176 FT112
Zeropadding float 66k/12 0/0 98k/82 79k/11
Hawkins-Int. float 145k/161 0/0 179k/19 148k/41
Vandermonde fixed 6.62/0.02 16.22/0 6.49/0.03 4.40/0
Divide&Conquer fixed 8.46/0 11.55/0 7.65/0.03 6.37/0

Abs.: maxk=1...n
˘

∆k
¯

, rel.: maxk=1...n
˘

∆k/F F T(x)k
¯

, with ∆k = ‖FFT(x)k−

f(x)k‖, x ∈ C
n is the inputvector, f(x)k the k-th element in the outputvector

Both Zeropadding and Hawkins-Interpolation used float-
ing-point. The fixed-point algorithms had Twiddle factors
with 15 bits each, the input were 16-Bit IQ-Samples.
Silicon Compared to the butterfly, the extra hardware
is a multiplexer, a register, and a ADDSUB-circuit. The
latter is for calculating IFTs. The AGUs needed nine new
counters, none of them having more than 12 bits. Because
the internal values can gain an extra amount of log2 n
bits, our FFT288 produces 25 bit values (16 bits input
+log2 288) resulting in a total accumulator size of 40 bits.
Memory Consumption Even though it is possible to
implement the DFTpσ-stages with no more than maxσ (pσ)
words memory usage, it was decided to use a temporary
buffer. This buffer is four times the size of the input
vector (2304 Bytes) and holds intermediate results with
full precision. The Twiddle factors are stored in a ROM-
table with a total of 3328 Bytes.

VI. Conclusion

This paper demonstrates the principles of implementing
arbitrary FTn, applicable for both hard- and software
systems. The proposed hardware has no length restrictions
and only minimal overhead compared to the well-known
FFT circuit. The same structure may be configured to
implement different length FTn and IFTn; this provided
significant savings in the design time for the DRM base
band IP [4] that was used as an example in this paper.

References

[1] T. Cormen, C. Leierson, R. Rivest, C. Stein,
”Introduction to algorithms, second edition”, ISBN
0-262-03293-7, 2001, pp. 836

[2] ”Nuclear Science Symposium and Medical Imaging
Conference, 1994”, ISBN 0-7803-2544-3, 1995, pp.
1433-1437

[3] EBU, ”Digital Radio Mondiale (DRM), System
Specification (V2.1.1)”, ETSI Standard ES 201980,
2004

[4] F. Mayer, M. Schlicht, A. Heuberger, S. Melzer,
”Chipset Development for Digital Radio Mondiale
(DRM)”, Proceedings of ICCE05, 10.-12.01.2005, Las
Vegas, USA

